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Abstract. Landslide inventories are crucial for the assessment of landslide susceptibility and hazard. An analysis of historical
landslides can reveal periods of intensified landslide activity, but the features of these landslides may have diminished over
time, particularly in the context of human impact. However, landslide features are often preserved well under forest cover and
are thus valuable for compiling or updating landslide inventories. However, the mapping of these features remains challenging.
Light detection and ranging (lidar) analysis and its derivatives are essential in landslide research, particularly in landslide
identification and mapping. Unlike the expert-based analysis of lidar derivatives, the use of object-based approaches to map
landslides from lidar data (semi)automatically requires further studies. This study adopts geographic-object-based image
analysis based solely on lidar derivatives for the inventory mapping of forest-covered historical landslides within a middle-
mountain region in Jena, Germany, and surrounding areas. A manually prepared expert-based inventory map was used for
model training and validation. Lidar derivative data were processed using (a) a default moving-window size (3 x 3; model I)
and (b) an optimal window size (model 11). Multi-resolution segmentation and support vector machine classification with
distinct rule sets were implemented for each model, followed by refinement and accuracy assessment against the inventory
map for model performance evaluation. The proposed approach achieved a 70% detection of existing landslides compared
with the inventory. Model 11 outperforms model | in accuracy, as indicated by its superior performance in scarp area detection
(15% improvement) and significantly lower false positives (30% reduction). However, although this method excellently
identifies and maps forest-covered historical landslides, its applicability is currently limited to large and medium landslides
(area > 0.5 ha). Overall, our findings suggest that landslides worldwide with clear geomorphological signatures in lidar data

can be identified using this approach.

1 Introduction

Landslides are significant in landform evolution, and numerous regions worldwide have considerable landslide hazard. In

certain areas, landslides frequently cause greater mortality and economic loss than other natural hazards, such as earthquakes,
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volcanic eruptions and floods (Guzzetti et al., 1999; Aksoy and Ercanoglu, 2012; Guzzetti et al., 2021). Landslide hazard is
the probability of a landslide of a specific magnitude occurring in a particular area within a defined time frame (Guzzetti et al.,
1999). Landslide hazard assessment necessitates the creation of detailed landslide maps, with landslide inventory maps
specifically recording the geographic distribution of documented landslides based on their detection and delineation (Guzzetti
et al., 1999). Such inventories are traditionally developed through analyses of aerial photographs, supplemented by fieldwork
and collection of historical data (Guzzetti et al., 1999, 2012; Santangelo et al., 2010). Albeit a standard geomorphological
practice, the field mapping of landslides, particularly older ones, is hindered by factors such as landslide size, limitations in
field perspectives, forest cover or erosion and anthropogenic modifications. Compared with traditional field techniques, remote
methods using aerial photographs and high-resolution digital elevation models (DEMs) provide more comprehensive and
accurate data, increasing mapping precision (Santangelo et al., 2010; Guzzetti et al., 2012; Bell et al., 2012; Crawford, 2014;
Schmaltz et al., 2016; Petschko, Bell, and Glade, 2016; Bernat Gazibara et al., 2019).

In recent decades, geographic-object-based image analysis (GEOBIA) has emerged as a powerful method for semi-
or fully automated landform mapping (e.g. Driagut and Blaschke, 2006; Blaschke, 2010a; Schneevoigt et al., 2010;
Seijmonsbergen et al., 2011; Anders et al., 2011, 2013; Dragut and Eisank, 2012; Zylshal et al., 2013; Eisank et al., 2014;
Robb et al., 2015; Pedersen, 2016; Guilbert and Moulin, 2017; Hossain and Chen, 2019). The integration of GEOBIA into
semi-automatic landslide mapping is a significant development in this field. Lahousse et al. (2011) developed a multiscale
GEOBIA technique for landslide mapping, but it is limited to specific areas and landslide types. Aksoy and Ercanoglu (2012)
proposed a semi-automatic inventory mapping method that uses fuzzy logic based on thematic data and spectral information.
Feizizadeh and Blaschke (2013) developed a rule-based classification approach utilising satellite data. Holbling et al. (2016)
identified spatiotemporal landslide hotspots by analysing historical and recent aerial photographs. Holbling et al. (2017)
compared GEOBIA and manual mapping approaches and concluded that GEOBIA-based semi-automatic mapping encounters
difficulties in areas where landslides are covered by vegetation. Karantanellis et al. (2020, 2021) stated that landslide modelling
based on unmanned aerial vehicles (UAVs) enables detailed, automated landslide characterisation, with high adaptability to
specific sites. They also found that UAVs enable time- and cost-efficient data collection, whereas machine learning algorithms
are effective for local-scale sub-zone landslide mapping when integrated into GEOBIA. Dias et al. (2023) showed that applying
GEOBIA-based methods to high-resolution satellite imagery can successfully identify shallow landslides and debris flows
with over 70% accuracy. Karantanellis and Holbling (2025) further emphasised the utility of high-resolution digital data, in
combination with GEOBIA-based methods, for improving landslide mapping and assessment accuracy.

Limited studies have explored the use of GEOBIA for landslide mapping in forested regions, particularly in the
underexamined context of historical landslide inventories. Plank and Martinis (2016) used an object-based and change
detection approach with DEM and synthetic-aperture radar (SAR) imagery to map landslides in vegetated areas by integrating
pre-event optical and post-event very-high-resolution polarimetric SAR data. However, their study focused only on fresh
landslides, not old landslides under forest cover. Comprehensive inventory mapping is required to address this limitation.

Eeckhaut et al. (2006, 2012) studied landslides occurring beneath forest cover, achieving a detection rate of approximately

2
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70% using lidar data alone. Their investigation encompassed multiple levels, but the moving-window size of land surface
variables (LSVs) for landslide components (e.g. landslide scarp and body) were not adequately addressed; both components
were treated using the same window size. Knevels et al. (2019) used open-source software to map forest landslides using
GEOBIA. Using high-resolution lidar data, they attained a 69% detection rate relative to manual mapping. Despite using
default window sizes, the authors acknowledged the potential of identifying the optimal window size for different landslide
portions, possibly enhancing model performance. In summary, previous researchers used default window sizes to calculate
LSVs, underscoring the need to explore optimal moving-window approaches to enhance landslide mapping.

Determining the optimal window sizes for different LSV relative to specific landforms is critical in semi-automatic
landform detection using digital data; a detailed review of scale-related issues is available in Driagut and Eisank (2011).
Seijmonsbergen et al. (2011) demonstrated that using multiple window sizes for LSVs can enhance semi-automatic landform
detection. They found that different landscape features are best detected using different window sizes, but they manually
selected these sizes to compare with expert-based mapped features. Pawluszek et al. (2018) investigated the impact of scaling
window sizes on the automatic detection of landslides using digital terrain model (DTM) data. After DTM rescaling, the
landslide modelling accuracy improved relative to that of the original (non-rescaled) DTM. Sirbu et al. (2019) developed an
automated approach to selecting the optimal window size of each LSV relative to landslide scarps, significantly improving
detection accuracy in two study sites in comparison with that under the default selection of window sizes. However, landslide
bodies were not examined in this study. No standard or operational method has been developed to achieve this goal despite the
considerable progress in automated landslide mapping.

This study investigates the potential of using GEOBIA and high-resolution DTM data for the semi-automatic mapping
of forest-covered historical landslides in middle-mountain regions in Jena, Germany. Specifically, the effectiveness of using
lidar data and their derivatives for the semi-automated inventory mapping of forest-covered landslides is assessed, particularly
the role of optimised window sizes. The central research question is as follows: How can DTM derivatives and optimised
window sizes enhance the reliability of GEOBIA-based semi-automatic landslide mapping in forested environments? Thus,
the influence of optimal window sizes for LSVs on the accuracy of semi-automatic landslide mapping is first determined. This
is then compared with results achieved using default window sizes. By addressing these aspects, this study seeks to advance
the understanding of, and improve practices in, landslide mapping within forested environments.

2 Study area

The study area is in the eastern part of Thuringia, near the city of Jena, Germany (Figure 1). It is approximately 150
km? in size and encompasses two elevation zones. The first zone is a low-elevation area that includes most of the Saale River
valley and parts of the Roda River catchment. The other is an elevated zone consisting of a plateau, low mountains and adjacent
slopes at elevations reaching 400 m asl (Zangana et al., 2023). Moreover, the study area is situated within the Thuringian Basin

and has two predominant geological formations. The Muschelkalk Formation (limestone) predominates in the higher-altitude



100

105

110

115

120

125

https://doi.org/10.5194/egusphere-2025-2139
Preprint. Discussion started: 15 May 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

regions, whereas the Buntsandstein Formation (red sandstone) dominates in the lower-altitude areas (Fohlisch, 2002; Seidel,
1992). The area has experienced periods of landslide activity and is notably associated with cuesta-based or rotational
landslides. Many historical large-scale landslides in this region are concealed by dense forest cover (Zangana et al., 2024).
Additionally, most landslides occurred on hillslopes in the eastern part of the Saale River, predominantly oriented towards the
north and northwest.

The annual mean temperature is 9°C-11°C, the summer mean is approximately 16°C-18°C and the winter mean is
0°C-2°C. The mean annual rainfall is 600—-800 mm (TMUEN, 2017). Land use is dominated by residences, industries and
infrastructure in the valley floors and some gentle slopes. Forests cover steep slopes and high plateaus. Farmlands are primarily
located along the floodplains of the Saale River and its tributaries, whereas grasslands and pastures are more sparsely
distributed, mainly in the northern portion of the study area (landnutzung). The soil types in this area include rendzinas
(Leptosols), which are on the Muschelkalk Formation, predominantly within the plateau area, and pararendzinas (Pelosols),
which are in the Buntsandstein area and on the slopes. However, the Holocene floodplain and flat areas of the region are
covered by gley—Vega soil types (Gleysols). Cambisols are found in areas dominated by sandstone, sandstone/siltstone and
claystone sequences of the lower and middle Buntsandstein, while podsols (Podzols) are present in some southern parts of the
study area (Rau et al., 2000; Zangana et al., 2023Db).

3 Methodology
3.1 Data

Landslide mapping is based on lidar-DTM data with a 1 m x 1 m resolution provided by the Thuringian State Office for Soil
Management and Geoinformation (TLUBN, 2019; Zangana et al., 2023a). Different LSVs, namely, slope, topographic
openness (TO), curvature (plan and profile), terrain roughness index (TRI) and topographic position index (TPI), were
generated using an original DTM. We utilised high-resolution lidar—DTM derivatives to create a landslide inventory map

(reference map) through visual mapping (Schulz and Schulz, 2004).

3.2 GEOBIA-based landslide inventory mapping

We used the software eCognition and developed a structured workflow to design a rule set for semi-automatic landslide
mapping. This workflow enabled landslide identification using two distinct models. Model 1 (MI) used the default window
size to calculate the LSVs as a pre-processing step for segmentation and classification, whereas model I1 (MI1) used the optimal
window size. The final results were exported as shapefiles to ArcGIS. The overall methodological framework, consisting of

three main stages, is illustrated in Figure 2.

3.2.1 STAGE I: Data preparation

This stage was divided into two main steps. Step 1: A landslide inventory map was manually prepared using DTM hillshade

4
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Figure 1. Study area. (a) Map: An orthophoto of the study area is overlaid on a hillshade DTM, with the landslide inventories delineated by
white polygons. (b) Photo (taken by Ikram Zangana on February 24, 2019): The photo faces the southeast direction, showing the hillslopes
of Kerenberge, Hausberg and Jenzig, along with a forested area and part of Jena City. Key locations are marked (1, 2 and 3), and the white

dashed lines indicate the lithological boundaries, with Muschelkalk (mu) limestone above and Buntsandstein (bu) sandstone below. The
orthophoto and the hillshade-DTM in (a) were obtained from TLUBN (2019) and other datasets are sourced from ESRI (2025).
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data and a visual analysis of all relevant LSVs. This inventory map served as a reference for model development and as a
baseline with which the final GEOBIA results were compared for accuracy assessment (AA). Step 2: ArcGIS and R were used
to generate LSVs using different window sizes. For M, the default window sizes in ArcGIS were applied based on standard
raster calculation methods and commonly published values. For MIl, we adopted an advanced approach involving the
automatic detection of optimal window sizes for each LSV for alignment between landslide-prone and non-landslide areas
(Sirbu et al., 2019).

Model I (M 1) Model Il (M 1)
STAGE I: Data

reparation
prep 1) Inventory map Default moving Optimal moving
window window
v

2) LSVs:
Slope, Curvature, TO, TRI & TPI

Segmentation
STAGE II: Segmentation &
Classification —m
A. Scarp vs.
non-scarp

Classification

I
B. Body vs.
non-body

STAGE llI: Refinements & GEOBIA-based refinments AA
Accuracy Assessment
(AA) TPrvs. FPr & ENF GEOBIA-.basecI Expert-‘l.:ased
landslides landslides

Figure 2. Flowchart of method used for mapping of landslide scarps and bodies. First, data are prepared using default and optimal window
sizes. Then, segmentation and classification are conducted via MRS and SVM. Finally, refinement and accuracy assessment (AA) are

performed by comparing the reference map with the GEOBIA results.

Samples were collected from landslide scarps, landslide bodies and non-landslide areas, and classification was
performed using unsupervised methods and support vector machines (SVMs; for further details, see Tzotsos and Argialas,
2008; Hong et al., 2017). An algorithm was trained using these samples and then used to classify the data accordingly. For
optimal results, this stage was repeated multiple times while adjusting the training samples iteratively to enhance accuracy in

comparison with the inventory map.
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3.2.2 STAGE II: Segmentation and classification

Segmentation and classification were performed using eCognition at two hierarchical levels. Segmentation was conducted
using multi-resolution segmentation (MRS; Baatz and Schépe, 2000) after trial-and-error across different scales (Dragut et al.,
2010; Li et al., 2015) for distinct landslide components (landslide scarps and bodies). Specifically, landslide scarps and bodies
were segmented and identified using separate projects and rule sets. MRS with scale parameters of 50 and 20 for landslide
scarps and MRS with scale parameters of 70 and 30 for landslide bodies achieved the best fit and were thus applied to MI and
MII, respectively.

3.2.3 STAGE Il1I: Refinement and accuracy assessment (AA)

This stage consisted of two main parts. Part 1, called GEOBIA-based refinement, addressed the false positives (FPs) and false
negatives (FNs) in the classification results from stage I, where FPs and FNs considerably outnumbered the true positives
(TPs). We developed a rule set in eCognition to improve the TP rate (TPr) relative to the FP rate (FPr) and FN rate (FNr),
continuing the refinement process until the outcome was satisfactory. In this phase, we utilised morphometric parameters of
the LSVs and classified objects, including their mean values, standard deviations, length-to-width ratios, areas, relative borders
and distances to specific objects. The landslide scarps and bodies were analysed separately, so different criteria and parameters
were applied to each of them during the development of the rule set in eCognition. In other words, the landslide scarp area was
treated separately from the landslide body area.

Part 2, called AA, involved comparing the final result of GEOBIA-based refinement (stage 111, part 1) with expert-
based landslide data (i.e. the inventory map). This comparison helped assess the efficacy of each model (MI and MII) against
the reference map. For a comprehensive investigation, AA was conducted separately for landslide scarps and bodies. As seen
in Section 3.3, number-based AA, area-based AA and calculation of additional metrics were adopted (Cai et al., 2018; Simoes
et al., 2023).

3.3 Accuracy assessment

Various metrics were used to evaluate the congruence between the GEOBIA mapping outcomes and the reference map
quantitatively. These comparisons were conducted independently per model and per landslide component: landslides scarps
and bodies.

3.3.1 Number-based accuracy assessment

Following Cai et al. (2018), we developed an R script to assess the accuracy of the model results numerically. If the GEOBIA-
detected polygon’s overlapping area exceeded 50% of the area of the reference landslide polygon, then it was considered a
correctly identified landslide (Eeckhaut et al., 2012; Knevels et al., 2019). The TP, FP and FN numbers and percentages were

calculated according to Ml and MI|I.
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4.3.1 Area-based accuracy assessment

In addition to number-based AA, area-based AA (hectares [ha]) was adopted to obtain more detailed information about the
absolute areas correctly detected as landslides (i.e. TP), undetected landslide areas (i.e. FN) and areas incorrectly mapped as
landslides (i.e. FP). To achieve this, we overlaid the inventory map polygons (reference map) on the GEOBIA-based polygons,
which included these three components, to calculate the percentage of each category and determine whether the use of the
optimal moving-window size in MIl improved the semi-automatic GEOBIA-based mapping results (Figure 6). The script for
this analysis was developed and implemented in R using the GEOBIA results according to previously reported key concepts
and algorithms (for further details, see Eisank et al., 2014; Cai et al., 2018).

4.3.1 Other accuracy assessment metrics

An R script developed using the segmetric package to calculate the classification accuracy of the objects of interest through
various metrics (Simoes et al., 2023). As outlined in Table 6, we analysed key metrics relevant to landslide studies: area fit
index (AFI), over-segmentation (OS), under-segmentation (US), F-measure, recall and precision. These metrics were based
on area proportions, with values between 0 and 1 except for AFI. A value closer to zero indicated a better spatial match between

the test and reference datasets (Diaset al., 2023).

4 Results

This chapter presents the main results of this study, specifically the optimisation results of window sizes for LSVs in M|, the

results of GEOBIA-based landslide detection and the model performance evaluation results from different AA approaches.
4.1 Optimisation of window sizes for LSVs in Ml

Figure 3 shows the variation in the optimal window size for each LSV across multiple runs, highlighting noticeable differences
between landslide scarps and bodies. Some LSVs (e.g. TO, plan curvature and profile curvature) have consistent window sizes,
whereas others (e.g. slope and TRI) show greater variability. Table 1 shows the final window sizes used in the analysis for
both landslide components in MII, along with the default values used in Ml for comparison. The optimal window sizes differ
not only between LSVs but also between scarps and bodies within the same LSV. Hence, separate rule sets were developed in
eCogpnition for each landslide component. Segmentation, classification, refinement and AA were then performed independently

for the scarps and bodies.
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Figure 3. Optimal window sizes for each LSV in predicting landslide scarps and bodies. Note: i1, i2, ..., i10: number of iterations; C:
curvature; TO: topographic openness; TRI: terrain roughness index; TPI: terrain position index.

Table 1. LSVs and corresponding window sizes per model.

210
Models/LSVs Slope C_plan C_profile TO TRI TPI
Scarp & 3x3 &
I * 3x3 3x3 - 3x3 33x33
Body X X 25x25 X X
Scarp 11x11 x7 5x5 5x5 x7 11x11
1 *¥E
Body 11x11 5x5 x7 x7 9x9 13x13

* Default window size, ** optimal window size

4.2 GEOBIA-based landslide modelling results

The GEOBIA-based landslide modelling results, specifically those of landslide scarps and bodies for both models (Ml and
215 MII), were compared with the inventory map to assess their spatial correspondence (Figures 4 and 5). Figure 4(a) shows the
MI results (default window sizes). The brown and yellow polygons represent the model-detected landslide scarps and bodies,
and the blue-dashed-line polygons indicate the landslide scarps and bodies in the reference map for comparison. Figure 5(a)
shows the same area but illustrates the MII results. In both figures, the polygons within the black-dashed-line regions are
further discussed in Section 5. A visual inspection of these maps shows that MI covers a larger portion of the landslide body
220 areas compared with MII, but MII performs better in detecting scarp zones. However, on-screen analysis shows that Mil is

more precise than M1 for each landslide component, as indicated by the brown and yellow polygons (GEOBIA-based results)

9
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and the blue-dashed-line polygons (reference map). This is particularly evident when considering the accuracy of landslide

size and FPr. These results are assessed more thoroughly in Figure 6 and Section 4.3.
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225  Figure 4. Final map of semi-automatic landslide detection using Ml, displayed over hillshade DTM (TLUBN, 2019) throughout study
area. The detected landslides are shown as the coloured polygons (brown: landslide scarps; yellow: landslide bodies), and those in the
inventory map are represented by the blue-dashed-line polygons. The insets outlined by black dotted lines are magnified and analysed in
Figure 7.
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Figure 5. Final map of semi-automatic landslide detection using MII, displayed over hillshade DTM (TLUBN, 2019) throughout study
area. The detected landslides are shown as the coloured polygons (brown: landslide scarps; yellow: landslide bodies), and those in the
inventory map are represented by the blue-dashed-line polygons. The insets outlined by black dotted lines are magnified and analysed in
Figure 7.
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4.3 Accuracy assessment results

4.3.1 Number-based accuracy assessment

The number-based AA results show a significant improvement in the scarp zones for MIl, with a higher TPr and significant
reductions in both FPs and FNs (Tables 2 and 3). In the landslide body areas, the FPs were also significantly reduced,

indicating an overall improvement in classification accuracy under the optimised window size.

Table 2. Number-based comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslide scarp detection
per model.

Model/Result TP % FP % FN %
| 21 55.2 24 533 17 44.8
1 25 65.8 5 16.6 13 34.2
Inventory map 38

Table 3. Number-based comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslide body detection

per model.
Model/Result TP % FP % FN %
| 34 85 25 42.3 6 15
1 29 72.5 7 194 11 27.5
Inventory map 40

4.3.1 Area-based accuracy assessment

The results for both the landslide scarp and landslide body areas are summarised in Tables 4 and 5, with MII showing
significant improvements over MI. As for scarp detection, MII increases the TP area from 6.3 ha to 9.1 ha and reduces the
FNs accordingly, demonstrating better detection performance than MI. Although the FPs remain relatively high, they
moderately decrease under MII. As for landslide body detection, MII significantly reduces the FPs from over 760 ha in Ml to
approximately 155 ha, indicating a significant improvement in mapping accuracy. However, a trade-off is observed, with the
FNs increasing slightly. These trends are also noticeable in Figure 6, which shows a significantly lower FP in MII (red

polygons in Figure 6(b)) than in MI (Figure 6(a)).

12
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255  Table 4. Comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs)in landslide scarp detection per model (area
in hectares).

Model/Result P % FP % FN %

I 6.3 30.6 93 59.6 143 69.3

11 9.1 43.8 8 47 11.6 56.2
Inventory map 20.7

® Q ® .
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Figure 6. Area-based AA metrics for landslide mapping using GEOBIA in (a) Ml and (b) MII.

260 Table 5. Comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs)in landslide body detection per model (area
in hectares).

Model/Result P % FP % FN %

I 191.2 78.7 769.2 80 51.8 213

11 161.9 66.6 1558 49 81 333
Inventory map 243

4.3.1 Other AA metrics

The US values for both models are below 0.50 in landslide scarp detection. Specifically, the US value drops from 0.84 in Ml

265 t0 0.60 in MII, demonstrating that the use of the optimal window size in MII significantly improves the results (Table 6).

13
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Likewise, the OS value for scarps decreases from 0.53 in Ml to 0.33 in MII. Additionally, the precision value improves in

M1, confirming the effectiveness of the optimised approach.

5 Discussion

This study highlights the efficacy of integrating GEOBIA with high-resolution DTM data for the inventory mapping of forest-
covered historical landslides in middle-mountain regions. The implementation of the optimal window size (MII) substantially
enhances landslide detection accuracy while significantly reducing both the number and total area of FPs relative to the use of
the default window size (MI). These results align with those of Sirbu et al. (2019), who demonstrated window size variability
across different LSVs for landslide scarps. Our study broadens this understanding by analysing both scarp and landslide body
areas, revealing that window sizes differ not only across LSVs but also between landslide scarp and body areas within the
same LSVs (Figure 3, Table 1). Consequently, landslide scarps and bodies should be detected separately within the model for
an accurate analysis of each landslide component.

In our study area, large forest-covered landslides (>0.5 ha) are more successfully detected than smaller landslides, as
they mostly show a strong geomorphological signature (Figure 7(b)). This is similar to previous findings (Knevels et al., 2019;
Dias et al., 2023). However, MII has a lower proportion of misclassified areas within the same inset (Section 4.3.1, Figure 6),
highlighting its ability to delineate landslide features accurately throughout the study area. Additionally, some automatically
delineated landslide polygons extend beyond the boundaries of the inventoried actual landslide areas (Figures 4 and 5). These
deviations can be attributed to limitations in the segmentation and classification algorithms, which may produce irregular or
overly coarse objects, or potential misclassifications or errors in object merging due to the use of a low threshold for object

characteristics during refinement and the final layout.

Table 6. Metrics used per landslide component per model.
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Scarp Body
Metric MI Ml MI M Il
AFI -0.37 -1.25 -10.21 -3.89
oS 0.53 0.33 0.18 0.18
F_measure 0.42 0.50 0.28 0.57
us 0.30 0.43 0.84 0.60
recall 0.36 0.48 0.80 0.77
precision 0.50 0.52 0.17 0.45

Other misclassifications occur in areas where the geomorphological signature or roughness resembles the
characteristics of landslide body or scarp candidates defined by the developed rule set. Both models incorrectly detect a scarp
in the same inset/window in Figure 7(d) but in different locations. The parameters in these areas are similar to those of actual
landslide scarps, so distinguishing them solely based on DTM data is difficult. The misclassified area is actually rock outcrops,
which are common in this region due to its local-scale variations in lithology, where different layers and materials respond
differently to weathering and erosion (see the geological map of the region in Zangana et al., 2023). Most landslide scarp FPs
in our study can be attributed to this issue. In addition, both models misclassify landslide scarps as landslide bodies for two
landslides from the inventory map in the same location in Figure 7(d). Thus, the scarp and landslide body areas in these cases
are highly similar, possibly due to landslide type/age and human activity, so the rule set cannot easily differentiate them from
the rest of the study area. However, the landslides are successfully mapped, highlighting the need for detecting different
landslides separately. This shortcoming of our approach is similar to those reported in previous studies on forest-covered
landslides (Li et al., 2015; Pawtuszek et al., 2019), demonstrating the challenges of performing inventory mapping without
FPs using DTM data alone (Eeckhaut et al., 2012; Bell et al., 2012; Goetz et al., 2014; Knevels et al., 2019).

15



https://doi.org/10.5194/egusphere-2025-2139

Preprint. Discussion started: 15 May 2025 EG U h .
© Author(s) 2025. CC BY 4.0 License. spnere
Preprint repository

Figure 7. Insets from Figures 4 and 5. These images illustrate the results of Ml and MII and examples of misclassifications. The leftmost
column displays the inventory map (blue-dotted-line polygons), overlaid on the hillshade DTM (TLUBN, 2019). The middle column presents

305 the Ml results (corresponding to insets b and ¢ in Figure 4), and the rightmost column shows the MII results (corresponding to the insets in
Figure 5).

Furthermore, both models identify the same location in Figure 7(e) as a landslide candidate (as a landslide scarp or a

landslide body). The right-hand part of Figure 7(e) in MIl shows a landslide that is excluded from the initial inventory due to

310 its dissimilarity with the other landslides and its small size. In MII, the body area of this landslide is incorrectly mapped over
cropland, grassland and built-up areas. On the left-hand side of the same window (Figure 7(e), Ml), the landslide body is wider

than the inventory map area that may correspond to the inventory map but is excluded from the initial inventory due to the

insufficiency of the available information for it to be classified as a large landslide. In the MI image in Figure 7(d), the FP area
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extends over a wide region, particularly into forested areas and erosional rims, demonstrating that this model has lower
landslide detection precision than MII. Therefore, landslide size should be addressed in future studies. Detecting landslides of
different types and sizes at various levels can enhance detection rates and further reduce the FPr.

An analysis of the AA results reveals that MI1 outperforms MI in detecting landslide components (bodies and scarps)
in terms of correctly identified areas and FP reduction. For instance, MII reduces the FPr by approximately 30% and 20% for
landslide scarps and landslide bodies, respectively (Tables 2 and 3).

MII slightly underestimates the landslide body areas; the TPr for landslide body detection decreases, offset by an
increase in the TPr for scarp areas. Although MI yields a higher TPr for landslide body areas, its FPr is approximately 30%
higher than that of MII, highlighting the importance of considering the FPr alongside the TPr and FNr for a comprehensive
evaluation of model performance. MII has considerable potential, effectively reducing the FPr while maintaining a strong TPr.
However, further research is needed to enhance the applicability of this approach across various environments and datasets.

Our TPr is comparable to that of Eeckhaut et al. (2012), who investigated the semi-automatic detection of landslides
using lidar data and identified 71% of landslides using object-based detection. In comparison, MII achieves TPr values of
65.8% and 72.5% for landslide scarps and landslide bodies, respectively. However, our approach demonstrates significantly
better accuracy through minimising of FPs. Eeckhaut et al. (2012) identified 18 FP landslides in an area affected by 38 deep-
seated landslides (47%), and Martha et al. (2010) reported 73 FP landslides for 55 expert-identified landslides (132%). As
shown in Tables 2 and 3, our study identifies only 5 FP landslide scarps (20% relative to the TPs) and 7 FP landslide bodies
(24% relative to the TPs). Therefore, MII detects landslides more efficiently than MI and the abovementioned approaches.
However, some studies (Martha et al., 2010; Eeckhaut et al., 2012; Knevels et al., 2019) do not provide the number or total
area of FPs or only present them numerically, hindering a comprehensive comparison of methods. Conversely, our evaluation
is more detailed, enabling a systematic assessment of model precision in identifying a specific number of TPs while minimising
FPs.

Misclassification also occurs in areas with degraded geomorphological signatures (Figure 6(c)). Landslide scarps are
often misidentified in regions with features resembling those of scarp candidates. These errors may be attributed to human-
made structures, such as roads, pits, ridges and rock toes. Similar false detections are observed in areas with partially eroded
or weathered limestone formations, particularly in areas where they overlay sandstone. This misclassification pattern aligns
with commonly reported results (Eeckhaut et al., 2012; Holbling et al., 2017; Knevels et al., 2019; Dias et al., 2023).

Selecting the appropriate window sizes for the LSVs is challenging (Figure 3, Table 1). The results show considerable
variability across the 10 runs, with the optimal window sizes often being larger for scarp zones than for body areas. For
example, the TPI and TRI significantly deviate between the optimal and default window sizes, highlighting the need to fine-
tune window sizes based on the specific geomorphometric characteristics of each landslide feature. By contrast, the default
window sizes used in MI often result in under- or over-segmentation, especially in scarp zones, compromising detection
accuracy. These results highlight the complexity of adjusting window sizes for accurate scarp and body detection and

emphasise the advantages of the tailored approach of Ml in overcoming these limitations.
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Compared with MI, MII is more effective in detecting individual landslides as distinct polygons and separating them
from neighbouring landslides. Additionally, MII significantly reduces the FP number and area, as shown in the model
comparison in Figure 7. This highlights the robustness of the optimal window size approach of MIl, which is more effective
for landslide detection than default or manually selected window sizes, which have been commonly used in many studies for
decades. Overall, this approach is a valuable advancement in improving semi-automatic landslide inventory mapping,
particularly in forested areas, where the limited availability of optical data often hampers complete inventory mapping
(Eeckhaut et al., 2013; Li et al., 2015; Knevels et al., 2019).

6 Conclusion

A GEOBIA-based approach is developed and used for the semi-automatic mapping of landslide inventories in the forested
areas of the middle-mountain regions of Jena, Germany. The proposed method effectively maps forest-covered landslides,
with a particular focus on medium and large landslides (greater than 0.5 ha), but does not detect smaller landslides. MII, which
uses the optimal window size, maps landslide scarps with higher accuracy than MI, which relies on default window sizes. MlI
shows a significant (15%) improvement in scarp detection during number-based AA while reducing the FPr by 30%. However,
this FPr reduction entails a trade-off, as the FNr increases by approximately 15%. Nonetheless, MII remains highly effective
for semi-automatic landslide mapping in forest-covered areas.

High-resolution DTM derivatives serve as the base data for landslide mapping using GEOBIA, which incorporates
an optimal window size to detect forest-covered old landslides in middle-mountain regions. Our analysis shows that this
approach may significantly improve the accuracy of landslide mapping in areas with sparse or no vegetation and in regions
where landslides are newly formed or have recently altered the terrain. This is due to the superior ability of DTM data to show
recent landslide features compared with historical ones.

This study emphasises the importance of calculating window sizes separately for different landslide components, as
landslide scarps and bodies require distinct window sizes for accurate detection. This factor should be considered thoroughly
before any calculation or modelling process involving landforms of interest. As landform detection depends on the defined
window size, our automated objective approach is highly suited for future research and semi-automatic landform modelling.
However, further evaluation is required to ascertain the transferability of this method to other regions; nonetheless, this method
should be globally applicable to the detection of landslides with well-defined geomorphological features using high-resolution
DTM data. As the pioneering use of GEOBIA for landslide inventory mapping in the Jena area, this study serves as a foundation
for future research on landslides in this region. Furthermore, it can be used as a base map for hazard and risk assessments,
especially as climate change may reactivate old landslides, as has occurred in many areas across Germany and around the

world.
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